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Despite recent interest in the structure and reactivity of 
azoalkane radical cations,1"4 only one report4 claims to have 
characterized such intermediates by ESR spectroscopy. Sur­
prisingly, this study4 concluded that the azoethane and azopropane 
radical cations are 7rNN rather than the c(n_) species anticipated 
from the photoelectron spectra of the neutral compounds,5 this 
interconversion being attributed to a conformational preference 
in the -K cation4 although it is not clear why this effect should 
overcome the large difference (2.6 eV) in vertical ionization en­
ergies.5d In contrast, we now report ESR results demonstrating 
that the rigid 2,3-diazabicyclo[2.2.2]oct-2-ene (1) radical cation 
has the expected a structure with a b2(n_) SOMOsd'6 in C2„ 
symmetry. 

1 1 - d 2 

Blackstock and Kochi3 have previously carried out an ESR 
study of the radiolytic oxidation of 1 in a CFCl3 matrix. They 
established that the signal carrier produced by y irradiation at 
77 K photorearranges to the cyclohexene radical cation on ex­
posure to blue light ( \ > 415 nm). Unfortunately, they were 
unable to analyze the complicated ESR spectrum of the original 
oxidized species and consequently could not decide whether it was 
due to T + or some other intermediate such as the cyclohexane-
1,4-diyl radical cation7 derived from V+ by loss of nitrogen. 

Our interest in these species led us to study the oxidation in 
other Freon matrices. Above 80-90 K, the ESR spectra of the 
oxidized species in CF2ClCFCl2, CFCl2CFCl2, CF3CCl3, and 
CF2ClCCl3 changed reversibly from an asymmetric pattern8 

similar to that previously reported in CFCl3
3 to an isotropic 

spectrum of 13 components which can be analyzed (Figure 1) as 
an overlapping quintet of quintets corresponding to the relation 
a(2N) = 2a(4H) = 31.0 G.9 These major couplings115-12 agree 
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Figure 1. ESR spectrum of a 7-irradiated 1 mol% solution of 2,3-dia-
zabicyclo[2.2.2]oct-2-ene in CF2ClCFCl2 (dose, 0.3 Mrad) at 110 K with 
a stick-diagram reconstruction of the hyperfine pattern for the radical 
cation. A spectrum computed from the hyperfine parameters of Table 
I and a line width of 5 G matched both the positions and relative in­
tensities of the 13 lines. The corresponding spectrum of a 7-irradiated 
CF2ClCFCl2 (blank) sample showed only weak anisotropic signals from 
matrix radicals. 

with those calculated for the 2B2 ground state of V+ (Table I), 
the 15.5 G coupling to the four anti hydrogens13 confirming the 
(T-delocalized character of the b2 SOMO depicted below.14 

The photoconversion to the cyclohexene radical cation3 was also 
observed in the CF2ClCFCl2 (Figure 2, (a) and (b)) and CF-
Cl2CFCl2 matrices15 and can now be represented by reaction 1, 
the putative cyclohexane-1,4-diyl radical cation intermediate being 
undetectable under photobleaching conditions.7 Subsequently, 

(10) a(2N) is within the range (28-36 G) of nitrogen couplings for 
structurally related radicals such as the iminoxyls" and o,o'-disubstituted 
arylnitroso radical cations.12 
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(13) ESR spectra of the radical cation from the stereospecifically labeled 
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Chem. Commun. 1987, 1179) confirmed that the 15.5 G coupling is to the 
anti hydrogens. Although the spectra from l-d2

,+ did not become isotropic 
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comparison with the corresponding anisotropic spectra of V+ showed that the 
spectral width was reduced by ca. 31 G, as expected. 
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(15) The photofragmentation of V* was not observed in CF3CCl3 and 
CF2ClCCl3, indicating that these matrices can prevent the extrusion of mo­
lecular nitrogen from the photoactivated state. 
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Table I. Comparison of Calculated and Experimental Isotropic Hyperfine Couplings for T+ 

, , AMI" spin densities i N D ( y s p i n c a ,c d h f c s ( G) from INDO 
interatomic distances" (pm) n u d e i Ps pt d e n s i t i e s Ps spin densities expt. hfcs (G) 

C(l)-N(2) 155.2 C(l)-Hbr 112.0 214N 0.0474 0.0517 0.0512 19.4/28.1/33.1« 31.0 
N(2)-N(3) 117.3 C(5)-Hsy„ 112.2 21H,,, -0.0107 -0.0033 -0.0065 -3.5,*-3.3' (3.6>> 
C(l)-C(6) 154.2 C(5)-H,oti 112.5 4'Hsyn 0.0010 0.0010 0.0025 1.4,* 1.3' 
C(5)-C(6) 152.6 4'Hami 0.0243 0.0177 0.0267 14.4,* 13.5' 15.5* 
"Optimized geometry by AMI method corresponding to a AHf for V+ of 241.985 kcal/mol. The CNN angle is 117.3 deg. *Dewar, M. J. S.; 

Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. cPople, J. A.; Beveridge, D. L.; Dobosch, P. A. J. Chem. Phys. 
1967, 47, 2026. ''After spin annihilation. 'Using the INDO proportionality constant of 379.4 G. -̂ Using the calculated atomic value of 550 G 
(Morton, J. R.; Rowlands, J. R.; Whiffen, D. H. National Physical Laboratory Bulletin; no. BPR 13, 1962). *Using the calculated atomic value of 
646 G (Morton, J. R.; Preston, K. F. J. Magn. Reson. 1978, 30, 577). * Using the INDO parameter of 540 G. 'Using the atomic value for hydrogen 
of 506.7 G. ' Measured from hf substructure of parallel features in the anisotropic spectrum recorded in CFCl3 at 130 K. k ENDOR measurements9 

give 15.09 G. 

Figure 2. ESR spectrum of a >-irradiated 1 mol% solution of 2,3-dia-
zabicyclo[2.2.2]oct-2-ene in CF2ClCFCl2 (dose, 0.3 Mrad) recorded 
consecutively (a) at 100 K, (b) at 110 K after photobleaching at 100 K 
with blue light (X < 400 nm; glass filter C. S. no. 7-54) from a 450-W 
xenon lamp, and (c) at 115 K. Spectra (a), (b), and (c) are assigned to 
1*+, cyclohexene,+, and V+ respectively. The resolution of the inner lines 
of the cyclohexene"+ spectrum depends on both the freon matrix and the 
temperature. 

the spectrum of 1"+ reappeared on warming the CF2ClCFCl2 

matrix from 110 to 115 K (Figure 2, (b) and (c)). This thermal 
transformation does not occur in CFCl3 and can be attributed to 
the bimolecular electron-transfer reaction 2'6 which becomes 

d nt f 1 

O' * * —- O +1 '̂ 

possible in the mobile CF2ClCFCl2 matrix. Thus, reactions 
1 and 2 constitute a photochemically assisted chain reaction for 
the conversion of 1 to cyclohexene via their radical cations, the 
loss of nitrogen in the photofragmentation of 1 , + resulting in a 
more powerful oxidant which regenerates V+. 
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(16) The exothermicity of reaction 2 is estimated to be 0.62 eV from the 
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The development of monoclonal antibody technology has pro­
vided ready access to homogeneous, high affinity ligand binding 
sites which recognize a large number of structurally diverse 
molecules.3 Consequently, the development of strategies for the 
introduction of catalytic activity into antibodies should allow the 
design of biological catalysts with a wide range of specificities. 
One such strategy involves the generation of antibodies whose 
binding sites are complementary to the rate-limiting transition 
state of the reaction of interest. For example, antibodies elicited 
to transition-state analogues for acyl transfer and pericyclic re­
actions were found to accelerate the corresponding reactions 
104-106-fold.4"10 Alternatively, it should be possible to obtain 
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